arrow arrow



<<   ̲   >>

˲ͲͲ

/ g - V W , - V W. V W - , . : geW , , , / . . V W - , - , D ( ) , R ( ) <= W. , - g R ( ) / D (), ( ' , ). R { ) = W (. . - W), ' ( ). , .

: /? '- R 2 :

  • 1) = = . , R (A) = R ] , ', , - ;
  • 2) = = 2 . R (A) = {: > 0}, , '. ³ ', 2 ;
  • 3) = = ( 2 -1). ': R (A) -R l , ', , , 0, 1 0;
  • 4) = = (). R (A) = {: > 0} - ', (').

. / 0 , - {/ "}, / 0 , {}, , . .

/ D ( ), . , , . ( L), . . ,

, Z? (L) D (L) , . .

1. -

L / = g , L , ; / , / - ( ,, 2 , ..., ") g - ( { , 2 , ..., ). L , R " R". ³ .

2.

f, g ([, 6]); ([ /, 6] [, ]), g - . L

L L: ([, ]) -> '([ , 6])

, . {/,} * = | , / "-" / { [, ]).

, /, -> /.

3.

, , . ³ , , . , , . {/ "}" _ !, f "= - sin (/ jx).

, [ , ] , . hf n = f ' n - cos (/ u) , . .

  • -sin (/? X) .
  • 4.

[, ], , 2 , /? '. g ([, ]), / , , . . 2 ([a, b ]). L: 2 {[, ]) - " ([, ]), Lf = a 0 f + aj ' + a 2 f. L f - g.

5. , , . / V, V - . I, , f - /, V / V , ( ) (I: F-> F, f I-> f ). W - (, V). , / V IV, . . / = 0, (: V -> W, / 0).

V W - . ( ) L ' 1 , ,

, . L, L '? .

  • 1. L ', . L " 1 , R (L) D (L). г L / '= g g /? () g R (L).
  • 2. L . , L " 1 - g W - g W .
  • 3. L ', . . . L -1 , , , g (), , . . .
 
<<   ̲   >>