Повна версія

Головна arrow Техніка arrow ТЕОРІЯ АВТОМАТИЧНОГО КЕРУВАННЯ. ЗАМКНУТІ СИСТЕМИ

  • Увеличить шрифт
  • Уменьшить шрифт


<<   ЗМІСТ   >>

ЗАВДАННЯ ПОДАЛЬШИХ ДОСЛІДЖЕНЬ

В основу подальших досліджень покладено доведений в роботах [36, 60] тезу про те, що інструментарій чисельної оптимізації регуляторів найбільш повний для вирішення завдань синтезу регуляторів при самих різних особливостях, ускладнюють вирішення цих завдань. В арсеналі цієї групи методів є різні цільові (вартісні) функції, ряд ефективних структур регуляторів і результати їх порівняльних досліджень. Розроблено теоретичні основи, які підтверджують коректність моделювання і збіжність алгоритмів оптимізації і дають рекомендації для зміни вартісної функції при відсутності збіжності або при незадовільне результатів оптимізації [60].

В даний час дослідження щодо вдосконалення цифрового управління динамічними об'єктами в замкнутому контурі автоматичного регулювання актуальні, потік публікацій на цю тему не вичерпується. Вітчизняна наука спирається на результати, отримані науковими школами московських, петербурзьких, новосибірських, томських і інших університетів. Велика увага цим проблемам приділяється і зарубіжними дослідниками, що відбивається в публікаціях журналів «International Journal of Control», «Технічна кібернетика», «Автоматика та телемеханіка», «Автометрія», «Автоматика та програмна інженерія» та багатьох інших. Прецизійне управління відрізняється вимогами зниження статичної помилки нижче 0,1%, а в деяких наукових установках (як, наприклад, в лазерних стандартах частоти) - нижче 0,001%, причому в даному випадку досить жорсткі обмеження накладаються і на допуски динамічної помилки. Задоволення цих умов може служити критерієм ефективності розроблюваних алгоритмів управління.

Таким чином, для досягнення поставленої мети необхідно вирішити такі завдання:

  • 1) розвиток методів і розробка методик оптимізації управління технологічними об'єктами з ланками запізнювання, з нелінійними елементами в їх моделі, з шумами на виході і з обуренням на виході:
    • • розробка нових ефективних структур регуляторів,
    • • розробка ефективних критеріїв оптимізації замкнутих систем,
    • • розробка ефективних методів оптимізації і дослідження їх збіжності;
  • 2) дослідження можливостей пропонованих методів і методик управління об'єктами в умовах суттєвої невизначеності коефіцієнтів моделі об'єкту і (або) їх випадковій зміні;
  • 3) розвиток методів оптимізації управління багатоканальними об'єктами.
 
<<   ЗМІСТ   >>